Delivery of therapeutic carbon monoxide by gas-entrapping materials

Autor: James D. Byrne, David Gallo, Hannah Boyce, Sarah L. Becker, Kristi M. Kezar, Alicia T. Cotoia, Vivian R. Feig, Aaron Lopes, Eva Csizmadia, Maria Serena Longhi, Jung Seung Lee, Hyunjoon Kim, Adam J. Wentworth, Sidharth Shankar, Ghee Rye Lee, Jianling Bi, Emily Witt, Keiko Ishida, Alison Hayward, Johannes L. P. Kuosmanen, Josh Jenkins, Jacob Wainer, Aya Aragon, Kaitlyn Wong, Christoph Steiger, William R. Jeck, Dustin E. Bosch, Mitchell C. Coleman, Douglas R. Spitz, Michael Tift, Robert Langer, Leo E. Otterbein, Giovanni Traverso
Rok vydání: 2022
Předmět:
Zdroj: Sci Transl Med
ISSN: 1946-6242
1946-6234
DOI: 10.1126/scitranslmed.abl4135
Popis: Carbon monoxide (CO) has long been considered a toxic gas but is now a recognized bioactive gasotransmitter with potent immunomodulatory effects. Although inhaled CO is currently under investigation for use in patients with lung disease, this mode of administration can present clinical challenges. The capacity to deliver CO directly and safely to the gastrointestinal (GI) tract could transform the management of diseases affecting the GI mucosa such as inflammatory bowel disease or radiation injury. To address this unmet need, inspired by molecular gastronomy techniques, we have developed a family of gas-entrapping materials (GEMs) for delivery of CO to the GI tract. We show highly tunable and potent delivery of CO, achieving clinically relevant CO concentrations in vivo in rodent and swine models. To support the potential range of applications of foam GEMs, we evaluated the system in three distinct disease models. We show that a GEM containing CO dose-dependently reduced acetaminophen-induced hepatocellular injury, dampened colitis-associated inflammation and oxidative tissue injury, and mitigated radiation-induced gut epithelial damage in rodents. Collectively, foam GEMs have potential paradigm-shifting implications for the safe therapeutic use of CO across a range of indications.
Databáze: OpenAIRE