Dual Ion Species Plasma Expansion from Isotopically Layered Cryogenic Targets

Autor: S. Astbury, S. R. Mirfayzi, Dean Rusby, Liu Hao, M. Tolley, Christopher Spindloe, R. J. Clarke, F. Wagner, Paul McKenna, Marco Borghesi, Guoqian Liao, David Carroll, Markus Roth, M. King, Aaron Alejo, Cristina Hernandez-Gomez, M. P. Selwood, Satyabrata Kar, Egle Zemaityte, R. J. Dance, S. Hook, I. Y. Arteaga, Graeme Scott, A. Higginson, David Neely, Yun-Hui Li
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Scott, G G, Carroll, D C, Astbury, S, Clarke, R J, Hernandez-Gomez, C, King, M, Alejo, A, Arteaga, I Y, Dance, R J, Higginson, A, Hook, S, Liao, G, Liu, H, Mirfayzi, S R, Rusby, D R, Selwood, M P, Spindloe, C, Tolley, M K, Wagner, F, Zemaityte, E, Borghesi, M, Kar, S, Li, Y, Roth, M, McKenna, P & Neely, D 2018, ' Dual Ion Species Plasma Expansion from Isotopically Layered Cryogenic Targets ', Physical Review Letters, vol. 120, no. 20, 204801 . https://doi.org/10.1103/PhysRevLett.120.204801
BASE-Bielefeld Academic Search Engine
Physical review letters 120(20), 204801 (2018). doi:10.1103/PhysRevLett.120.204801
ISSN: 1079-7114
Popis: Physical review letters 120(20), 204801 (2018). doi:10.1103/PhysRevLett.120.204801
A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer--thick layer of pure deuterium exists as a buffer species at the target--vacuum interface of a hydrogen plasma. Modeling shows that by controlling the deuterium layer thickness, a composite H+ /D+ ion beam can be produced by target normal sheath acceleration (TNSA), with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modeling shows that a (4.3 +/- 0.7) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9 degrees. Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4 +/- 0.7) MeV per nucleon was measured in a cone of half angle 7 degrees-9 degrees, while maintaining a significant TNSA proton component.
Published by APS, College Park, Md.
Databáze: OpenAIRE