Genome-wide prediction and prioritization of human aging genes by data fusion: a machine learning approach
Autor: | Ahmad Delbari, Vahid Rezaei Tabar, Kaveh Kavousi, Mina Ohadi, Masoud Arabfard |
---|---|
Rok vydání: | 2019 |
Předmět: |
Data Analysis
Aging Prioritization Candidate gene lcsh:QH426-470 lcsh:Biotechnology Biology Machine learning computer.software_genre Positive unlabeled learning Genome Ranking (information retrieval) 03 medical and health sciences Naive Bayes classifier 0302 clinical medicine lcsh:TP248.13-248.65 Genetics Humans Genome-wide Gene 030304 developmental biology 0303 health sciences business.industry Human aging genes Genomics Sensor fusion lcsh:Genetics Human genome Artificial intelligence DNA microarray business computer 030217 neurology & neurosurgery Research Article Biotechnology |
Zdroj: | BMC Genomics, Vol 20, Iss 1, Pp 1-13 (2019) BMC Genomics |
ISSN: | 1471-2164 |
DOI: | 10.1186/s12864-019-6140-0 |
Popis: | Background Machine learning can effectively nominate novel genes for various research purposes in the laboratory. On a genome-wide scale, we implemented multiple databases and algorithms to predict and prioritize the human aging genes (PPHAGE). Results We fused data from 11 databases, and used Naïve Bayes classifier and positive unlabeled learning (PUL) methods, NB, Spy, and Rocchio-SVM, to rank human genes in respect with their implication in aging. The PUL methods enabled us to identify a list of negative (non-aging) genes to use alongside the seed (known age-related) genes in the ranking process. Comparison of the PUL algorithms revealed that none of the methods for identifying a negative sample were advantageous over other methods, and their simultaneous use in a form of fusion was critical for obtaining optimal results (PPHAGE is publicly available at https://cbb.ut.ac.ir/pphage). Conclusion We predict and prioritize over 3,000 candidate age-related genes in human, based on significant ranking scores. The identified candidate genes are associated with pathways, ontologies, and diseases that are linked to aging, such as cancer and diabetes. Our data offer a platform for future experimental research on the genetic and biological aspects of aging. Additionally, we demonstrate that fusion of PUL methods and data sources can be successfully used for aging and disease candidate gene prioritization. |
Databáze: | OpenAIRE |
Externí odkaz: |