Synthesis of Stable and Low-CO2Selective Phase-Pure ϵ-Iron Carbide Catalysts in Synthesis Gas Conversion
Autor: | Wang, Peng, Chen, Wei, Chiang, Fu Kuo, Dugulan, A. Iulian, Zhang, Kui, Chai, Jiachun, Li, Weizhen, Feng, Bo, Lin, Quan, Lv, Yijun, Guo, Zhongshan, Men, Zhuowu, Hensen, Emiel J.M., Qin, Lang, Fan, Liang-Shih |
---|---|
Přispěvatelé: | Inorganic Materials & Catalysis, EIRES Chem. for Sustainable Energy Systems |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | ACS Symposium Series, 229-255 STARTPAGE=229;ENDPAGE=255;TITLE=ACS Symposium Series ACS Symposium Series ISBN: 9780841298620 Materials in Clean Energy Conversion and Utilization, 229-255 STARTPAGE=229;ENDPAGE=255;TITLE=Materials in Clean Energy Conversion and Utilization |
Popis: | The Fe-catalyzed Fischer-Tropsch (FT) synthesis reaction is the core of the coal-to-liquids (CTL) process, which is an efficient route to convert coal into liquid fuels via synthesis gas (a mixture of CO and H2). Conventional Fe-based FT catalysts convert typically 30% of the feed CO to undesirable CO2during the FT step. A decrease of CO2production in FT units can reduce the profitability of the overall CTL process. In this context, we synthesized phase-pure ϵ-Fe-carbide FT catalysts by careful control of the pretreatment and carburization conditions starting from Raney Fe. The resulting phase-pure Fe-carbide exhibits a low CO2selectivity during the Fischer-Tropsch reaction. The developed preparation method can be applied to supported Fe catalysts and does not require expensive starting chemicals. The purity and durability of as-synthesized phase-pure ϵ-Fe-carbide catalyst under FT conditions were characterized in detail by in situ characterization techniques. A bulk phase-pure ϵ-Fe-carbide catalyst operated at 23 bar, 235 °C and a H2/CO ratio of 1.5 shows stable performance with no deactivation during a 150 h pilot test. The catalyst is free of primary CO2formation and presents reduced secondary CO2formation compared to conventional Fe-based FT catalysts. These findings contribute to the development of new Fe-based FT catalysts for CTL processes. |
Databáze: | OpenAIRE |
Externí odkaz: |