A hybrid immersed boundary method for dense particle-laden flows

Autor: Victor Chéron, Fabien Evrard, Berend van Wachem
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Popis: A novel smooth immersed boundary method (IBM) based on a direct-forcing formulation is proposed to simulate incompressible dense particle-laden flows. This IBM relies on a regularization of the transfer function between the Eulerian grid points (to discretise the fluid governing equations) and Lagrangian markers (to represent the particle surface) to fulfill the no-slip condition at the surfaces of the particles, allowing both symmetrical and non-symmetrical interpolation and spreading supports to be used. This enables that local source term contributions to the Eulerian grid, accounting for the boundary condition enforced at a Lagrangian marker on the surface of a particle, can be present on the inside of the particle only when this is beneficial, for instance when the Lagrangian marker is near another particle surface or near a domain boundary. However, when the Lagrangian marker is not near another particle surface or a domain boundary, the interpolation and spreading operators are locally symmetrical, meaning a ``classic'' IBM scheme is adopted. This approach, named hybrid IBM (HyBM), is validated with a number of test-cases from the literature. These results show that the HyBM achieves more accurate results compared to a classical IBM framework, especially at coarser mesh resolutions, when there are Lagrangian markers close to a particle surface or a domain wall.
Databáze: OpenAIRE