Optomechanical response with nanometer resolution in the self-mixing signal of a terahertz quantum cascade laser

Autor: Pierluigi Rubino, Alessandro Pitanti, James Keeley, Edmund H. Linfield, Marco Cecchini, Paul Dean, Lianhe Li, A. Giles Davies, Alessandro Tredicucci, Andrea Ottomaniello
Přispěvatelé: Ottomaniello, A., Keeley, J., Rubino, P., Li, L., Cecchini, M., Linfield, E. H., Giles Davies, A., Dean, P., Pitanti, A., Tredicucci, A.
Rok vydání: 2019
Předmět:
Zdroj: Optics letters 44 (2019): 5663–5666. doi:10.1364/OL.44.005663
info:cnr-pdr/source/autori:Ottomaniello A.; Keeley J.; Rubino P.; Li L.; Cecchini M.; Linfield E.H.; Giles Davies A.; Dean P.; Pitanti A.; Tredicucci A./titolo:Optomechanical response with nanometer resolution in the self-mixing signal of a terahertz quantum cascade laser/doi:10.1364%2FOL.44.005663/rivista:Optics letters/anno:2019/pagina_da:5663/pagina_a:5666/intervallo_pagine:5663–5666/volume:44
ISSN: 1539-4794
0146-9592
Popis: The effectiveness of self-mixing interferometry has been demonstrated across the electromagnetic spectrum, from visible to microwave frequencies, in a plethora of sensing applications, ranging from distance measurement to material analysis, microscopy and coherent imaging. Owing to their intrinsic stability to optical feedback, quantum cascade lasers (QCLs) represent a source that offers unique and versatile characteristics to further improve the self-mixing functionality at mid infrared and terahertz (THz) frequencies. Here, we show the feasibility of detecting with nanometer precision deeply subwalength (< {\lambda}/6000) mechanical vibrations of a suspended Si3N4-membrane used as the external element of a THz QCL feedback interferometric apparatus. Besides representing a platform for the characterization of small displacements, our self-mixing configuration can be exploited for the realization of optomechanical systems, where several laser sources can be linked together through a common mechanical microresonator actuated by radiation pressure.
Comment: 5 pages, 4 figures
Databáze: OpenAIRE