Frontal impact dummy kinematics in oblique frontal collisions: evaluation against post mortem human subject test data
Autor: | Yngve Haland, Anders Flogård, Fredrik Törnvall, Dimitrios Kallieris, Johan Davidsson, Mats Y. Svensson |
---|---|
Rok vydání: | 2005 |
Předmět: |
musculoskeletal diseases
Adult Male Shoulder Poison control Kinematics Manikins Head-on collision Cadaver Humans Aged Orthodontics business.industry Public Health Environmental and Occupational Health Accidents Traffic Oblique case Structural engineering Equipment Design Seat Belts Middle Aged Biomechanical Phenomena Hybrid III Lumbar spine Female business human activities Safety Research Head Geology Test data |
Zdroj: | Traffic injury prevention. 6(4) |
ISSN: | 1538-9588 |
Popis: | Objective Today, a predominant percentage of vehicles involved in car crashes are exposed to oblique or frontal offset collisions. The aim of this study is to evaluate the 50th percentile male Hybrid III, THOR 99 and THOR Alpha dummies by comparing them with the corresponding kinematics of post mortem human subjects (PMHS) in this type of collision. Methods The PMHS data include results from oblique frontal collision tests. They include sled tests with near-side and far-side belt geometries at 15°, 30° and 45° angles. The test subjects were restrained with a three-point lap-shoulder belt and the ?V was 30 km/h. Results The results from the Hybrid III and THOR 99 tests showed that, in most of the test, the head trajectories were an average of approximately 0.1 m shorter than those from equivalent PMHS. The Hybrid III and THOR 99 far-side belt geometry tests showed that the belt remained in place longer on the shoulder of the Hybrid III than on the THOR 99 and the THOR Alpha. This was probably due to a stiffer lumbar spine in the Hybrid III and to a large groove in the steel of the superior surface of the Hybrid III shoulder structure. The THOR 99 escaped from the shoulder belt about 40 - 50 ms earlier than the THOR Alpha. The results from the THOR Alpha tests show that the head trajectory accorded fairly well with the PMHS data, as long as the shoulder belt did not slip off the shoulder. Although the THOR Alpha shoulder escaped the shoulder belt in the 45° far-side belt geometry, the PMHS did not. This may be due to the THOR Alpha shoulder design, with approximately 0.05 m smaller superior and medial shoulder range-of-motion, in combination with a relatively soft lumbar spine. Conclusions The THOR Alpha provides head trajectories similar to those of the PMHS under these loading conditions, provided the shoulder belt remains in position on the shoulder. When the shoulder belt slipped off the dummy shoulder, the head kinematics was altered. The shoulder range-of-motion may be a contributing factor to the overall kinematics of an occupant in oblique frontal impact situations where the occupant moves in a trajectory at an angle from that of the longitudinal direction of the car. |
Databáze: | OpenAIRE |
Externí odkaz: |