Extending standard urban outdoor noise propagation models to complex geometries
Autor: | Judicaël Picaut, Christophe Langrenne, Philippe Jean, Julien Maillard, Matthew J. Kamrath |
---|---|
Přispěvatelé: | Centre Scientifique et Technique du Bâtiment (CSTB), Unité Mixte de Recherche en Acoustique Environnementale (UMRAE ), Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement (Cerema)-Université Gustave Eiffel, Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), Conservatoire National des Arts et Métiers [CNAM] (CNAM), RP4-F150620459 |
Rok vydání: | 2018 |
Předmět: |
Acoustics and Ultrasonics
Mean squared error Computer science Acoustics 02 engineering and technology URBAN NOISE 01 natural sciences RAY ACOUSTICS Arts and Humanities (miscellaneous) HYBRID METHOD 0103 physical sciences 0202 electrical engineering electronic engineering information engineering Divergence (statistics) 010301 acoustics Boundary element method MILIEU URBAIN [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] BEM Attenuation MODELLING 020207 software engineering MODELISATION Term (time) Noise Path (graph theory) ACOUSTIQUE |
Zdroj: | Journal of the Acoustical Society of America Journal of the Acoustical Society of America, Acoustical Society of America, 2018, 143 (4), pp.2066-2075. ⟨10.1121/1.5027826⟩ |
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/1.5027826 |
Popis: | A hybrid method that combines a noise engineering method and the 2.5D boundary element method approximates outdoor sound propagation in large domains with complex objects more accurately than noise engineering methods alone and more efficiently than reference methods alone. Noise engineering methods (e.g., ISO 9613-2 or CNOSSOS-EU) efficiently approximate sound levels from roads, railways, and industrial sources in cities for simple, box-shaped geometries by first finding the propagation paths between the source and receiver, then applying attenuations (e.g., geometrical divergence and atmospheric absorption) to each path, and finally incoherently summing all of the path contributions. Standard engineering methods cannot model more complicated geometries but introducing an additional attenuation term quantifies the influence of complex objects. Calculating this extra attenuation term requires reference calculations but performing reference computations for each path is too computationally expensive. Thus, the extra attenuation term is linearly interpolated from a data table containing the corrections for many source/receiver positions and frequencies. The 2.5D boundary element method produces the levels for the real and simplified geometries and subtracting them yields a table of corrections. For a T-shaped barrier with two buildings, this approach reduces the mean error by approximately 2 dBA compared to a standard engineering method. |
Databáze: | OpenAIRE |
Externí odkaz: |