Landscape epidemiology in urban environments: The example of rodent-borne Trypanosoma in Niamey, Niger
Autor: | Martin Godefroid, Gauthier Dobigny, Jean-Pierre Rossi, Ibrahima Kadaoure |
---|---|
Přispěvatelé: | Centre de Biologie pour la Gestion des Populations (UMR CBGP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD [France-Sud])-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Centre Régional AGRHYMET (CRA), Université d'Abomey-Calavi, University of Abomey Calavi (UAC), ISIS program : 553, IRD : 301027/00, Republic of Niger : 301027/00 |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0106 biological sciences
Medical staff Calibration (statistics) [SDV]Life Sciences [q-bio] Species distribution Population Dynamics Datasets as Topic 01 natural sciences Mice 0302 clinical medicine Niger Public health Ecology public health Spatial epidemiology Infectious Diseases spatial epidemiology maxent [SDE]Environmental Sciences Maxent Cartography Microbiology (medical) Trypanosoma lewisi Landscape epidemiology Movement 030231 tropical medicine Biology landscape metrics 010603 evolutionary biology Microbiology 03 medical and health sciences Trypanosomiasis Landscape metrics Genetics Animals Urban landscape Cities Molecular Biology Ecology Evolution Behavior and Systematics Ecosystem Models Statistical urban landscape Rats Rodent-borne Trypanosoma Common spatial pattern Species richness Murinae Gerbillinae Animal Distribution |
Zdroj: | Infection, Genetics and Evolution Infection, Genetics and Evolution, Elsevier, 2018, 63, pp.307-315. ⟨10.1016/j.meegid.2017.10.006⟩ |
ISSN: | 1567-1348 1567-7257 |
DOI: | 10.1016/j.meegid.2017.10.006⟩ |
Popis: | International audience; Trypanosomes are protozoan parasites found worldwide, infecting humans and animals. In the past decade, the number of reports on atypical human cases due to Trypanosoma lewisi or T. lewisi-like has increased urging to investigate the multiple factors driving the disease dynamics, particularly in cities where rodents and humans co-exist at high densities. In the present survey, we used a species distribution model, Maxent, to assess the spatial pattern of Trypanosoma-positive rodents in the city of Niamey. The explanatory variables were landscape metrics describing urban landscape composition and physiognomy computed from 8 land-cover classes. We computed the metrics around each data location using a set of circular buffers of increasing radii (20 m, 40 m, 60 m, 80 m and 100 m). For each spatial resolution, we determined the optimal combination of feature class and regularization multipliers by fitting Maxent with the full dataset. Since our dataset was small (114 occurrences) we expected an important uncertainty associated to data partitioning into calibration and evaluation datasets. We thus performed 350 independent model runs with a training dataset representing a random subset of 80% of the occurrences and the optimal Maxent parameters. Each model yielded a map of habitat suitability over Niamey, which was transformed into a binary map implementing a threshold maximizing the sensitivity and the specificity. The resulting binary maps were combined to display the proportion of models that indicated a good environmental suitability for Trypanosoma-positive rodents. Maxent performed better with landscape metrics derived from buffers of 80 m. Habitat suitability for Trypanosoma-positive rodents exhibited large patches linked to urban features such as patch richness and the proportion of landscape covered by concrete or tarred areas. Such inferences could be helpful in assessing areas at risk, setting of monitoring programs, public and medical staff awareness or even vaccination campaigns. |
Databáze: | OpenAIRE |
Externí odkaz: |