New Omics–Derived Perspectives on Retinal Dystrophies: Could Ion Channels-Encoding or Related Genes Act as Modifier of Pathological Phenotype?
Autor: | Rosalia D'Angelo, Concetta Scimone, Karim Mahmoud Nabil, Luigi Donato, Ebtesam M. Abdalla, Antonina Sidoti, Simona Alibrandi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
0301 basic medicine
Male Computational biology Biology ENCODE Catalysis Article lcsh:Chemistry Inorganic Chemistry 03 medical and health sciences chemistry.chemical_compound 0302 clinical medicine Retinal Dystrophies Humans Exome Physical and Theoretical Chemistry lcsh:QH301-705.5 Molecular Biology Gene Integral membrane protein Spectroscopy Ion channel Exome sequencing Genes Modifier Polymorphism Genetic Organic Chemistry ion channels Retinal General Medicine Phenotype Computer Science Applications Pedigree 030104 developmental biology lcsh:Biology (General) lcsh:QD1-999 chemistry retinal degenerations WES Female synapses 030217 neurology & neurosurgery |
Zdroj: | International Journal of Molecular Sciences Volume 22 Issue 1 International Journal of Molecular Sciences, Vol 22, Iss 70, p 70 (2021) |
ISSN: | 1422-0067 |
DOI: | 10.3390/ijms22010070 |
Popis: | Ion channels are membrane-spanning integral proteins expressed in multiple organs, including the eye. Here, ion channels play a role in several physiological processes, like signal transmission and visual processing. A wide range of mutations have been reported in the corresponding genes and their interacting subunit coding genes, which contribute significantly to a wide spectrum of ocular diseases collectively called channelopathies, a subgroup of inherited retinal dystrophies. Such mutations result in either a loss or gain-of channel functions affecting the structure, assembly, trafficking and localization of channel proteins. We investigated the probands of seven Italian and Egyptian families affected by not completely defined forms of inherited retinal dystrophies, by whole exome sequencing (WES) experiments, and found interesting variants in already known causative genes probably able to impair retinal functionalities. However, because such variants did not completely explain the phenotype manifested by each patient, we proceed to further investigate possible related genes carrying mutations that might complement previously found data, based on the common aspect linked to neurotransmission impairments. We found 10 mutated genes whose variants might alter important ligand binding sites differently distributed through all considered patients. Such genes encode for ion channels, or their regulatory proteins, and strictly interact with known causative genes, also sharing with them synaptic-related pathways. Taking into account several limitations that will be resolved by further experiments, we believe that our exploratory investigation will help scientists to provide a new promising paradigm for precise diagnosis of retinal dystrophies to facilitate the development of rational treatments. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |