Osteoblast iron genes: real time PCR and microarray hybridization approach under hyperoxia
Autor: | Soetjipto Soetjipto, Hartmut Kuehn, Prihartini Widiyanti |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physiology
Iron 030310 physiology Transferrin receptor Hyperoxia Biology Real-Time Polymerase Chain Reaction 03 medical and health sciences Receptors Transferrin Drug Discovery Gene expression medicine Humans RNA Messenger 030304 developmental biology Pharmacology Bone growth 0303 health sciences Osteoblasts Oxygen transport General Medicine Molecular biology Reverse transcriptase Real-time polymerase chain reaction medicine.symptom Primer (molecular biology) Transcription Factors |
Zdroj: | Journal of Basic and Clinical Physiology and Pharmacology. 32:491-496 |
ISSN: | 2191-0286 2020-0471 |
DOI: | 10.1515/jbcpp-2020-0471 |
Popis: | Objectives Iron is essential for cell growth, differentiation, electron transfer, and oxygen transport. Hyperoxia may increase the turnover of bone matrix components with a net effect of accelerated bone growth. Although hyperoxia was claimed could increase osteoblast activity, but expression level in possible genes which play role in proliferation is still unclear. This research aims to prove the differences of expression level of transferrin receptor gene and iron regulated transporter and other genes of 7F2 under 24 h normoxia, 24 h hyperoxia, and 48 h hyperoxia and the effect of hyperoxia by using osteoblast cell culture 7F2. Methods Reverse transcriptase, real time Polymerase Chain Reaction (PCR), and microarray is used to qualitatively detect gene expression. The computer softwares such as National Center for Biotechnology Information (NCBI) data base, Software Affymetrix, DNA Strider program, Genomatix – DiAlign program, Oligo 5.0 program (Software primer design) from Wojciech & Piotr Rychlik, and Genetyx-Mac version 8.0 have been used to analyze the PCR result. Results Under 24 h hyperoxia, there were 3,884 copies of transferrin receptor mRNA per 1,000,000 copies of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNA. After 24 h hyperoxia, 8,325 copies of transferrin receptor mRNA per 1,000,000 GAPDH mRNA copies were found showing 2.1-fold up regulation. After 48 h hyperoxia, there was no significant increase at the level of expression of transferrin receptor mRNA, 8,079 mRNA copies per 1,000,000 copies of mRNA were found (2.0-fold up regulation compared with 24 h normoxia). Conclusions It can be concluded that hyperoxia might have an effect on upregulating the expression of some osteoblast genes which might have an impact on osteoblast activity. |
Databáze: | OpenAIRE |
Externí odkaz: |