Considering inverse factorial series as time integration method
Autor: | Ahmad Deeb, Dina Razafindralandy, Aziz Hamdouni |
---|---|
Přispěvatelé: | Laboratoire des Sciences de l'Ingénieur pour l'Environnement - UMR 7356 (LaSIE), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Factorial
010102 general mathematics Mathematical analysis Inverse 010103 numerical & computational mathematics Borel summation 01 natural sciences Mathematics::Logic symbols.namesake Robustness (computer science) [MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG] [NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD] symbols [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph] 0101 mathematics Decomposition of time series ComputingMilieux_MISCELLANEOUS [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] Euler summation Factorial moment Mathematics |
Zdroj: | AIP Conference Proceedings AIP Conference Proceedings, American Institute of Physics, 2017, ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, 1798, ⟨10.1063/1.4972721⟩ |
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4972721⟩ |
Popis: | A time integration method of a dynamical system, based on a (possibly divergent) time series decomposition of the solution, followed by a Borel summation using an inverse factorial series, is examined. The stress is put on the robustness of inverse factorial series algorithm, compared to the Borel-Pade one, to compute the Borel sum of the solution. |
Databáze: | OpenAIRE |
Externí odkaz: |