Note on class number parity of an abelian field of prime conductor, II

Autor: Humio Ichimura
Rok vydání: 2019
Předmět:
Zdroj: Kodai Math. J. 42, no. 1 (2019), 99-110
ISSN: 0386-5991
DOI: 10.2996/kmj/1552982508
Popis: For a fixed integer $n \geq 1$, let $p=2n\ell+1$ be a prime number with an odd prime number $\ell$, and let $F=F_{p,\ell}$ be the real abelian field of conductor $p$ and degree $\ell$. We show that the class number $h_F$ of $F$ is odd when 2 remains prime in the real $\ell$th cyclotomic field $\mathbf{Q}(\zeta_{\ell})^+$ and $\ell$ is sufficiently large.
Databáze: OpenAIRE