Note on class number parity of an abelian field of prime conductor, II
Autor: | Humio Ichimura |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Kodai Math. J. 42, no. 1 (2019), 99-110 |
ISSN: | 0386-5991 |
DOI: | 10.2996/kmj/1552982508 |
Popis: | For a fixed integer $n \geq 1$, let $p=2n\ell+1$ be a prime number with an odd prime number $\ell$, and let $F=F_{p,\ell}$ be the real abelian field of conductor $p$ and degree $\ell$. We show that the class number $h_F$ of $F$ is odd when 2 remains prime in the real $\ell$th cyclotomic field $\mathbf{Q}(\zeta_{\ell})^+$ and $\ell$ is sufficiently large. |
Databáze: | OpenAIRE |
Externí odkaz: |