Popis: |
Electrospinning natural polymers represents a developing interest in the field of biomaterials. Electrospun nanofibers have been shown to facilitate tissue regeneration and emulate body tissue, making them ideal for modern biomedical applications. These water-soluble natural polymers including alginate, have also shown promise as drug delivery vehicles. However, many biopolymers including alginate are inherently charged, making the formation of nanofibers difficult. To better understand the potential of natural polymer-based fibers in drug delivery applications, fiber formulations and drug loading concentrations of alginate-based scaffolds were investigated. It was found electrospinning poly(vinyl alcohol) with alginate facilitated fiber formation while the co-polymer agarose showed minor improvement in terms of alginate electrospinnability. Once uniform fibers were formed, the antibiotic ciprofloxacin was added into the polymer electrospinning solution to yield drug-loaded nanofibers. These optimized parameters coupled with small molecule release rate data from the drug-loaded, alginate-based fibers have been used to establish a catalog of small molecule release profiles. In the future, this catalog will be further expanded to include drug release rate data from other innately charged natural polymer-based fibers such as chitosan. It is anticipated that the cataloged profiles can be applied in the further development of biomaterials used in drug delivery. |