Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells
Autor: | B. Obliers, Annette Fuchs, U. Klock, M. Schuster, Olivier Diat, Joachim Maier, Klaus-Dieter Kreuer, Stephen J. Paddison, U. Traub |
---|---|
Přispěvatelé: | Max-Planck-Institut für Festkörperforschung, Max-Planck-Gesellschaft, FuMATech, Structures et propriétés d'architectures moléculaire (SPRAM - UMR 5819), Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Department of Chemical & Biomolecular Engineering, The University of Tennessee [Knoxville], Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut Nanosciences et Cryogénie (INAC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]) |
Jazyk: | angličtina |
Rok vydání: | 2008 |
Předmět: |
Proton conductivity
Energy Engineering and Power Technology Proton exchange membrane fuel cell 02 engineering and technology 010402 general chemistry 7. Clean energy 01 natural sciences chemistry.chemical_compound Nafion Electrical and Electronic Engineering Physical and Theoretical Chemistry Hyflon ion Methanol fuel Ionomer Separator (electricity) Water transport Renewable Energy Sustainability and the Environment 021001 nanoscience & nanotechnology 0104 chemical sciences PEM fuel cell chemistry Chemical engineering Hydrogen fuel Methanol 0210 nano-technology Dow membrane [PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] Simulation Nuclear chemistry |
Zdroj: | Journal of Power Sources Journal of Power Sources, 2008, 178, pp.499 Journal of Power Sources, Elsevier, 2008, 178, pp.499 |
ISSN: | 0378-7753 1873-2755 |
Popis: | Short-side-chain (SSC) perfluorosulfonic acid ionomers of different ion exchange capacity, IEC, (Dow 840 and Dow 1150) are characterized with respect to water sorption, transport (proton conductivity, electroosmotic water drag and water diffusion), microstructure and visco-elastic properties as a function of temperature and degree of hydration. The data are compared to those of Nafion 117 (Nafion 1100), and the implications for the use of such ionomers as separator materials in direct methanol and hydrogen fuel cells are discussed. For this purpose, a scheme is used which allows for the simulation of the water distribution and the resulting solvent (water, methanol) fluxes and potential losses across the membranes under transient and steady state conditions. The lower solvent (water, methanol) transport across Dow 1150 in direct methanol fuel cells is essentially the result of the reduced swelling. The smaller potential losses across Dow 840 compared to Nafion 117 in hydrogen fuel cells is mainly the result of the higher charge carrier concentration. The present comparison demonstrates that combining high IEC with high mechanical stability, e.g. by increasing crystallinity as in the present case, or by increasing molecular weight, cross-linking or introducing interacting particles, results in an increase in proton conductivity and lower electroosmotic drag of water. The improved stability is also anticipated to preserve the morphology of the membrane/electrode interface under conditions at which Nafion 117 starts to show plastic deformation. Hence, this may prove to be a suitable approach to improve membrane performance in both direct methanol and PEM fuel cells. |
Databáze: | OpenAIRE |
Externí odkaz: |