A potential peptide derived from cytokine receptors can bind proinflammatory cytokines as a therapeutic strategy for anti-inflammation
Autor: | Hao-Jen Hsu, Shih Yi Peng, Hao Hsiang Tsao, San-Yuan Chen, Shinn Jong Jiang, Pei I. Tsai, Yi Chung, Hsin Ting Huang, Chun Chun Chang |
---|---|
Rok vydání: | 2019 |
Předmět: |
0301 basic medicine
THP-1 Cells medicine.medical_treatment Interleukin-1beta lcsh:Medicine Inflammation Plasma protein binding Article Proinflammatory cytokine Pathogenesis 03 medical and health sciences 0302 clinical medicine medicine Humans Receptors Cytokine lcsh:Science Receptor Multidisciplinary Interleukin-6 Tumor Necrosis Factor-alpha Chemistry Monocyte lcsh:R 030104 developmental biology Cytokine medicine.anatomical_structure Cancer research lcsh:Q Tumor necrosis factor alpha medicine.symptom Peptides 030217 neurology & neurosurgery Protein Binding |
Zdroj: | Scientific Reports, Vol 9, Iss 1, Pp 1-15 (2019) Scientific Reports |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-018-36492-z |
Popis: | Chronic inflammation is a pivotal event in the pathogenesis of cardiovascular diseases, including atherosclerosis, restenosis, and coronary artery disease. The efficacy of current treatment or preventive strategies for such inflammation is still inadequate. Thus, new anti-inflammatory strategies are needed. In this study, based on molecular docking and structural analysis, a potential peptide KCF18 with amphiphilic properties (positively charged and hydrophobic residues) derived from the receptors of proinflammatory cytokines was designed to inhibit cytokine-induced inflammatory response. Simulations suggested that KCF18 could bind to cytokines simultaneously, and electrostatic interactions were dominant. Surface plasmon resonance detection showed that KCF18 bound to both tumor necrosis factor-α (TNF-α) and interleukin-6, which is consistent with MM/PBSA binding free energy calculations. The cell experiments showed that KCF18 significantly reduced the binding of proinflammatory cytokines to their cognate receptors, suppressed TNF-α mRNA expression and monocyte binding and transmigration, and alleviated the infiltration of white blood cells in a peritonitis mouse model. The designed peptide KCF18 could remarkably diminish the risk of vascular inflammation by decreasing plasma cytokines release and by directly acting on the vascular endothelium. This study demonstrated that a combination of structure-based in silico design calculations, together with experimental measurements can be used to develop potential anti-inflammatory agents. |
Databáze: | OpenAIRE |
Externí odkaz: |