AdRoit is an accurate and robust method to infer complex transcriptome composition
Autor: | Christina Adler, Macdonald Lynn, Gurinder S. Atwal, Michael Schaner, Jinrang Kim, Tao Yang, Robert Breese, Lacroix-Fralish Michael L, Wen Fury, Yu Bai, Nicole Alessandri-Haber |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Profiling (computer programming)
Genome Molecular composition Computer science QH301-705.5 Gene Expression Profiling Medicine (miscellaneous) Mixed cell Computational biology Sensitivity and Specificity Article General Biochemistry Genetics and Molecular Biology humanities Computational biology and bioinformatics Transcriptome Gene expression Adaptive learning Biology (General) General Agricultural and Biological Sciences |
Zdroj: | Communications Biology, Vol 4, Iss 1, Pp 1-14 (2021) Communications Biology |
ISSN: | 2399-3642 |
Popis: | Bulk RNA sequencing provides the opportunity to understand biology at the whole transcriptome level without the prohibitive cost of single cell profiling. Advances in spatial transcriptomics enable to dissect tissue organization and function by genome-wide gene expressions. However, the readout of both technologies is the overall gene expression across potentially many cell types without directly providing the information of cell type constitution. Although several in-silico approaches have been proposed to deconvolute RNA-Seq data composed of multiple cell types, many suffer a deterioration of performance in complex tissues. Here we present AdRoit, an accurate and robust method to infer the cell composition from transcriptome data of mixed cell types. AdRoit uses gene expression profiles obtained from single cell RNA sequencing as a reference. It employs an adaptive learning approach to alleviate the sequencing technique difference between the single cell and the bulk (or spatial) transcriptome data, enhancing cross-platform readout comparability. Our systematic benchmarking and applications, which include deconvoluting complex mixtures that encompass 30 cell types, demonstrate its preferable sensitivity and specificity compared to many existing methods as well as its utilities. In addition, AdRoit is computationally efficient and runs orders of magnitude faster than most methods. Yang et al. present AdRoit, a method for deconvoluting bulk RNA sequencing and spatial transcriptomics data. AdRoit performs well on datasets from complex tissues with many different cell types. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |