Popis: |
Tree aboveground biomass (e.g., bole, branches, and foliage), M, plays key roles in forest management as it is the basis for evaluating the sink and flux of, for example, carbon and nitrogen, stand productivity, dendro-energy, litter & root biomass, hydrological parameters, among others. With the aim of further simplifying and understanding M, the central objective of this research was to review available techniques to develop, test, and validate two independent novel non-destructive, semi-empirical models using four major M datasets: (i) the shape dimensional bio-physical, MSD; and (ii) the restrictive mathematical, MNR, models. The proposed models advance and test how each of both approaches: (i) constant or (ii) variable scalar coefficients perform when predicting M with major assumptions bearing bio-physical principles. Results showed that M has to be predicted eventually with variable scalar coefficients; both models predicted compatible M figures; the evaluations matched the conventional equation well; and the independent data sets were well validated; the coefficients of determination, r2, and the standard errors, Sx%, had values >96% and |