Speeding up parameter and rule learning for acyclic probabilistic logic programs

Autor: Francisco Henrique Otte Vieira de Faria, Fabio Gagliardi Cozman, Arthur Colombini Gusmão, Glauber De Bona, Denis Deratani Mauá
Rok vydání: 2019
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2018.12.012
Popis: This paper introduces techniques that speed-up parameter and rule learning for acyclic probabilistic logic programs. We focus on maximum likelihood estimation of parameters, and show that significant improvements can be obtained by efficiently handling probabilistic rules. We then move to structure learning, where we learn sets of rules, by introducing an algorithm that greatly simplifies exact score-based learning. Experiments demonstrate that our methods can produce orders of magnitude speed-ups over the state-of-art in parameter and rule learning.
Databáze: OpenAIRE