Differential Morphological Profile on remote sensing images for vegetation mapping in a semi-arid region of the Algerian Saharan Atlas
Autor: | Samir L'haddad, Akila Kemmouche, Aude Nuscia Taïbi, Thouraya Merazi-Meksen |
---|---|
Přispěvatelé: | Espaces et Sociétés (ESO), Le Mans Université (UM)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Université d'Angers (UA)-AGROCAMPUS OUEST-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN), Université de Nantes (UN)-Université de Nantes (UN), Institut de Géographie et d'Aménagement Régional de l'Université de Nantes (IGARUN), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 2 (UR2), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université d'Angers (UA)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Le Mans Université (UM) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0106 biological sciences
010504 meteorology & atmospheric sciences [SDE.MCG]Environmental Sciences/Global Changes Feature selection 010603 evolutionary biology 01 natural sciences Normalized Difference Vegetation Index Dimension (vector space) medicine Ecology Evolution Behavior and Systematics ComputingMilieux_MISCELLANEOUS 0105 earth and related environmental sciences Earth-Surface Processes Remote sensing Ecology Pixel [SHS.GEO]Humanities and Social Sciences/Geography 15. Life on land Arid [SDE.ES]Environmental Sciences/Environmental and Society Thematic Mapper [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [SHS.ENVIR]Humanities and Social Sciences/Environmental studies Stage (hydrology) medicine.symptom Vegetation (pathology) Geology |
Zdroj: | Journal of Arid Environments Journal of Arid Environments, Elsevier, 2021, 188, pp.104463. ⟨10.1016/j.jaridenv.2021.104463⟩ |
ISSN: | 0140-1963 1095-922X |
DOI: | 10.1016/j.jaridenv.2021.104463⟩ |
Popis: | In this paper, a new approach for mapping polygenic depressions colonised by vegetation is presented. These spatially periodic vegetation patterns situated in the arid areas of North Africa are known locally as "Dayas". The mapping of these structures is an important component in monitoring their evolution which can be regarded as an indicator of socio-environmental conditions. For this purpose, a method based on satellite image analysis is proposed. First, Landsat Thematic Mapper image inspection is performed to highlight the vegetation spots using the Normalized Difference Vegetation Index (NDVI). Then, a Differential Morphological Profile (DMP) which includes both spectral and morphological information, is built for each NDVI pixel. We adapt the F-Score technique combined with the SVM classifier, to select and classify the most effective DMP images in order to extract the Daya's signature. Using feature selection, overall classification accuracy reached 97.8% with a kappa value of 95.61 but also reduced the dimension of the DMP vector. Dayas' morphological and vegetation characteristics are related to their degree of evolution. Furthermore, we categorise categorise the 170 extracted Dayas into three classes according to their size. On the resulting map, each class corresponds to a specific morphological and vegetation evolution stage. |
Databáze: | OpenAIRE |
Externí odkaz: |