Template iterations and maximal cofinitary groups

Autor: Vera Fischer, Asger Törnquist
Rok vydání: 2015
Předmět:
Zdroj: Fundamenta Mathematicae. 230:205-236
ISSN: 1730-6329
0016-2736
DOI: 10.4064/fm230-3-1
Popis: The main result of the present paper is that $\mathfrak a_g$, the minimal size of maximal cofinitary group, can be of countable cofinality. To prove this we define a natural poset for adding a maximal cofinitary group of a given cardinality, which enjoys certain combinatorial properties allowing it to be used within a similar template forcing construction. Additionally we obtain that $\mathfrak a_p$, the minimal size of a maximal family of almost disjoint permutations, and $\mathfrak a_e$, the minimal size of a maximal eventually different family, can be of countable cofinality.
24 pages
Databáze: OpenAIRE