Template iterations and maximal cofinitary groups
Autor: | Vera Fischer, Asger Törnquist |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Fundamenta Mathematicae. 230:205-236 |
ISSN: | 1730-6329 0016-2736 |
DOI: | 10.4064/fm230-3-1 |
Popis: | The main result of the present paper is that $\mathfrak a_g$, the minimal size of maximal cofinitary group, can be of countable cofinality. To prove this we define a natural poset for adding a maximal cofinitary group of a given cardinality, which enjoys certain combinatorial properties allowing it to be used within a similar template forcing construction. Additionally we obtain that $\mathfrak a_p$, the minimal size of a maximal family of almost disjoint permutations, and $\mathfrak a_e$, the minimal size of a maximal eventually different family, can be of countable cofinality. 24 pages |
Databáze: | OpenAIRE |
Externí odkaz: |