Adaptive Design of Experiments for Conservative Estimation of Excursion Sets
Autor: | Yann Richet, Clément Chevalier, Julien Bect, David Ginsbourger, Dario Azzimonti |
---|---|
Přispěvatelé: | Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), Università della Svizzera italiana = University of Italian Switzerland (USI)-Scuola universitaria professionale della Svizzera italiana [Manno] (SUPSI), IDIAP Research Institute, Institute of Mathematical Statistics and Actuarial Science [Bern] (IMSV), University of Bern, Université de Neuchâtel (UNINE), Laboratoire des signaux et systèmes (L2S), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Méthodes d'Analyse Stochastique des Codes et Traitements Numériques (GdR MASCOT-NUM), Centre National de la Recherche Scientifique (CNRS), Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SCAN, Idiap Research Institute (Idiap), Institut de Statistique [Neuchâtel] (UNINE), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS) |
Rok vydání: | 2019 |
Předmět: |
Statistics and Probability
FOS: Computer and information sciences Batch sequential strategies Mathematical optimization Gaussian process model Computer science 0211 other engineering and technologies Machine Learning (stat.ML) Mathematics - Statistics Theory 02 engineering and technology Statistics Theory (math.ST) 01 natural sciences Set (abstract data type) Methodology (stat.ME) 010104 statistics & probability symbols.namesake 510 Mathematics [STAT.ML]Statistics [stat]/Machine Learning [stat.ML] Statistics - Machine Learning [MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] False positive paradox FOS: Mathematics 0101 mathematics Adaptive design of experiments Gaussian process Uncertainty reduction theory Statistics - Methodology ComputingMilieux_MISCELLANEOUS 021103 operations research Applied Mathematics Design of experiments Excursion Function (mathematics) Conservative estimates Computer experiment Excursion sets Modeling and Simulation symbols [STAT.ME]Statistics [stat]/Methodology [stat.ME] Stepwise Uncertainty Reduction 360 Social problems & social services |
Zdroj: | INI workshop on "Key UQ methodologies and motivating applications" (UNQW01) INI workshop on "Key UQ methodologies and motivating applications" (UNQW01), Jan 2018, Cambridge, United Kingdom Technometrics Technometrics, Taylor & Francis, 2021, 63 (1), pp.13-26. ⟨10.1080/00401706.2019.1693427⟩ |
ISSN: | 0040-1706 1537-2723 |
DOI: | 10.6084/m9.figshare.10358789 |
Popis: | We consider the problem of estimating the set of all inputs that leads a system to some particular behavior. The system is modeled by an expensive-to-evaluate function, such as a computer experiment, and we are interested in its excursion set, that is, the set of points where the function takes values above or below some prescribed threshold. The objective function is emulated with a Gaussian process (GP) model based on an initial design of experiments enriched with evaluation results at (batch-) sequentially determined input points. The GP model provides conservative estimates for the excursion set, which control false positives while minimizing false negatives. We introduce adaptive strategies that sequentially select new evaluations of the function by reducing the uncertainty on conservative estimates. Following the stepwise uncertainty reduction approach we obtain new evaluations by minimizing adapted criteria. Tractable formulas for the conservative criteria are derived, which allow more convenient optimization. The method is benchmarked on random functions generated under the model assumptions in different scenarios of noise and batch size. We then apply it to a reliability engineering test case. Overall, the proposed strategy of minimizing false negatives in conservative estimation achieves competitive performance both in terms of model-based and model-free indicators. Supplementary materials for this article are available online. |
Databáze: | OpenAIRE |
Externí odkaz: |