The turnpike property in semilinear control
Autor: | Pighin, Dario |
---|---|
Přispěvatelé: | Pighin, Dario, Departemento de Matematicas, Universidad Autonoma de Madrid (UAM) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Primary: 49N99
Secondary: 35K91 Optimization and Control (math.OC) FOS: Mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] [MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC] [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] [MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] Mathematics - Optimization and Control |
Popis: | An exponential turnpike property for a semilinear control problem is proved. The state-target is assumed to be small, whereas the initial datum can be arbitrary.Turnpike results have also been obtained for large targets, requiring that the control acts everywhere. In this case, we prove the convergence of the infimum of the averaged time-evolution functional towards the steady one.Numerical simulations have been performed. |
Databáze: | OpenAIRE |
Externí odkaz: |