Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes
Autor: | Sicheng Li, Ting Lei, Yu-Qing Zheng, Chenxin Zhu, Zhenan Bao, Raymond G. Beausoleil, H-S Philip Wong, Gregory Pitner, Leilai Shao, Kwang-Ting Cheng, Tsung-Ching Huang, Guanhua Fang |
---|---|
Rok vydání: | 2019 |
Předmět: |
Materials for devices
0301 basic medicine Materials science Science General Physics and Astronomy Hardware_PERFORMANCEANDRELIABILITY 02 engineering and technology Carbon nanotube 7. Clean energy Article General Biochemistry Genetics and Molecular Biology law.invention Condensed Matter::Materials Science 03 medical and health sciences law Hardware_INTEGRATEDCIRCUITS lcsh:Science Electronic circuit Multidisciplinary Analogue electronics business.industry Amplifier Transistor General Chemistry Condensed Matter::Mesoscopic Systems and Quantum Hall Effect 021001 nanoscience & nanotechnology Electrical and electronic engineering Flexible electronics 030104 developmental biology Thin-film transistor Optoelectronics lcsh:Q 0210 nano-technology business Low voltage Hardware_LOGICDESIGN |
Zdroj: | Nature Communications, Vol 10, Iss 1, Pp 1-10 (2019) Nature Communications |
ISSN: | 2041-1723 |
Popis: | Carbon nanotube (CNT) thin-film transistor (TFT) is a promising candidate for flexible and wearable electronics. However, it usually suffers from low semiconducting tube purity, low device yield, and the mismatch between p- and n-type TFTs. Here, we report low-voltage and high-performance digital and analog CNT TFT circuits based on high-yield (19.9%) and ultrahigh purity (99.997%) polymer-sorted semiconducting CNTs. Using high-uniformity deposition and pseudo-CMOS design, we demonstrated CNT TFTs with good uniformity and high performance at low operation voltage of 3 V. We tested forty-four 2-µm channel 5-stage ring oscillators on the same flexible substrate (1,056 TFTs). All worked as expected with gate delays of 42.7 ± 13.1 ns. With these high-performance TFTs, we demonstrated 8-stage shift registers running at 50 kHz and the first tunable-gain amplifier with 1,000 gain at 20 kHz. These results show great potentials of using solution-processed CNT TFTs for large-scale flexible electronics. Carbon nanotube thin-film transistor is promising for solution-processed, large-scale flexible electronics, but the device yields remain poor to date. Lei et al. show low-voltage flexible digital and analog circuits based on high-purity and high-yield separation of semiconducting carbon nanotubes. |
Databáze: | OpenAIRE |
Externí odkaz: |