The decomposition of strategy-proof random social choice functions on dichotomous domains
Autor: | Jérémy Picot, Arunava Sen, Abhishek Gaurav |
---|---|
Přispěvatelé: | Princeton University, Bureau d'Économie Théorique et Appliquée (BETA), Université de Lorraine (UL)-Université de Strasbourg (UNISTRA)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Indian Statistical Institute [New Delhi], Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg (UNISTRA)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Discrete mathematics
Sociology and Political Science 05 social sciences General Social Sciences Domain (software engineering) [SHS]Humanities and Social Sciences RSCF 0502 economics and business DEP domain Decomposition (computer science) Feature (machine learning) Probability distribution Random social choice functions 050207 economics Statistics Probability and Uncertainty Extreme point Special case Social choice theory General Psychology 050205 econometrics Mathematics Deterministic extreme point |
Zdroj: | Mathematical Social Sciences Mathematical Social Sciences, Elsevier, 2017, 90, pp.28-34. ⟨10.1016/j.mathsocsci.2017.03.004⟩ |
ISSN: | 0165-4896 |
DOI: | 10.1016/j.mathsocsci.2017.03.004⟩ |
Popis: | International audience; A feature of strategy-proof and efficient random social choice functions (RSCFs) defined over several important domains is that they are fixed probability distributions over deterministic strategy-proof and efficient social choice functions. We call such domains deterministic extreme point (DEP) domains. Examples of DEP domains are the domain of all strict preferences and the domain of single-peaked preferences. We show that the dichotomous domain introduced in Bogomolnaia et al. (2005) is not a DEP domain. We find a necessary condition for a strategy-proof RSCF to be written as a fixed probability distribution of deterministic strategy proof social choice functions. We show that this condition is compatible with efficiency. We also show that the condition is sufficient for decomposability in a special case. |
Databáze: | OpenAIRE |
Externí odkaz: |