Simple reparameterization to improve convergence in linear mixed models
Autor: | Tina Flisar, Gregor Gorjanc, L. A. García-Cortés, Jose Martínez-Ávila |
---|---|
Rok vydání: | 2010 |
Předmět: |
Mixed model
McMC Monte Carlo method Statistics Linear model Bayesian analysis Markov process Sampling (statistics) Markov chain Monte Carlo Biology Generalized linear mixed model Statistics::Computation symbols.namesake Evolutionary biology Convergence (routing) symbols Applied mathematics Statistics::Methodology Reparameterization General Agricultural and Biological Sciences Convergence Water Science and Technology |
Zdroj: | Repositorio de Resultados de Investigación del INIA INIA: Repositorio de Resultados de Investigación del INIA Acta agriculturae Slovenica Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria INIA |
Popis: | Slow convergence and mixing are one of the main problems of Markov chain Monte Carlo (McMC) algorithms applied to mixed models in animal breeding. Poor convergence is to a large extent caused by high posterior correlation between variance components and solutions for the levels of associated effects. A simple reparameterization of the conventional model for variance component estimation is presented which improves McMC sampling and provides the same posterior distributions as the conventional model. Reparameterization is based on the rescaling of hierarchical (random) effects in a model, which alleviates posterior correlation. The developed model is compared against the conventional model using several simulated data sets. Results show that presented reparameterization has better behaviour of associated sampling methods and is several times more efficient for the low values of heritability. Počasna konvergenca je eden največjih problemov uporabe metode Monte Carlo z Markovimi verigami (McMC) za mešane modele na področju genetike in selekcije domačih živali. Slaba konvergenca je v veliki meri posledica visoke posteriorne korelacije med komponentami variance in rešitvami za ravni pripadajočih vplivov. Predstavljamo enostavno reparametrizacijo običajnega modela, ki izboljša lastnosti metode McMC in daje enake posteriorne porazdelitve parametrov modela kot standardni pristop. Reparametrizacija temelji na standardizaciji hierarhičnih (naključnih) vplivov v modelu, kar posledično spremeni posteriorne korelacije med parametri. Oba pristopa smo primerjali na večjem setu simuliranih podatkov. Rezultati kažejo, da reparametrizacija vodi do bolj učinkovitih metod McMC vzorčenja in je nekajkrat bolj učinkovita za analizo lastnosti z nizko heritabilitet. |
Databáze: | OpenAIRE |
Externí odkaz: |