3-difference cordiality of some corona graphs
Autor: | R. Ponraj, M. Maria Adaickalam, R. Kala |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Proyecciones (Antofagasta), Volume: 38, Issue: 1, Pages: 83-96, Published: MAR 2019 Proyecciones (Antofagasta) v.38 n.1 2019 SciELO Chile CONICYT Chile instacron:CONICYT |
Popis: | Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map where k is an integer 2 ≤ k ≤ p. For each edge uv, assign the label |f (u) − f (v)|. f is called k-difference cordial labeling of G if |vf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the umber of vertices labelled with x, ef (1) and ef (0) respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate 3-difference cordial labeling behavior of Tn ʘK1, Tn ʘ2K1, Tn ʘK2, A(Tn)ʘK1, A(Tn)ʘ 2K1, A(Tn) ʘ K2. |
Databáze: | OpenAIRE |
Externí odkaz: |