Mechanism of super-assembly of respiratory complexes III and IV
Autor: | Iakes Ezkurdia, Marta Loureiro, José Antonio Enríquez, Jesús Vázquez, Enrique Calvo, Nadia Mercader, Adela Guarás, Carolina García-Poyatos, Rocio Nieto-Arellano, Sara Cogliati |
---|---|
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Gene isoform chemistry.chemical_classification Multidisciplinary Protein subunit Respiratory chain Biology Amino acid Electron Transport Complex IV 03 medical and health sciences 030104 developmental biology Directed mutagenesis Biochemistry chemistry Structural biology Mitochondrial Membranes Respirasome Animals Protein Isoforms COX6A1 |
Zdroj: | Nature. 539:579-582 |
ISSN: | 1476-4687 0028-0836 |
DOI: | 10.1038/nature20157 |
Popis: | Respiratory chain complexes can super-assemble into quaternary structures called supercomplexes that optimize cellular metabolism. The interaction between complexes III (CIII) and IV (CIV) is modulated by supercomplex assembly factor 1 (SCAF1, also known as COX7A2L). The discovery of SCAF1 represented strong genetic evidence that supercomplexes exist in vivo. SCAF1 is present as a long isoform (113 amino acids) or a short isoform (111 amino acids) in different mouse strains. Only the long isoform can induce the super-assembly of CIII and CIV, but it is not clear whether SCAF1 is required for the formation of the respirasome (a supercomplex of CI, CIII2 and CIV). Here we show, by combining deep proteomics and immunodetection analysis, that SCAF1 is always required for the interaction between CIII and CIV and that the respirasome is absent from most tissues of animals containing the short isoform of SCAF1, with the exception of heart and skeletal muscle. We used directed mutagenesis to characterize SCAF1 regions that interact with CIII and CIV and discovered that this interaction requires the correct orientation of a histidine residue at position 73 that is altered in the short isoform of SCAF1, explaining its inability to interact with CIV. Furthermore, we find that the CIV subunit COX7A2 is replaced by SCAF1 in supercomplexes containing CIII and CIV and by COX7A1 in CIV dimers, and that dimers seem to be more stable when they include COX6A2 rather than the COX6A1 isoform. |
Databáze: | OpenAIRE |
Externí odkaz: |