In Situ Observations of Phase Changes in Shock Compressed Forsterite
Autor: | A. M. Dillman, Joel V. Bernier, Darren C. Pagan, Michael A. Homel, M. Newman, Richard Kraus, N. W. Sinclair, Jonathan Lind, Paul D. Asimow, Jed L. Mosenfelder, S. Lee, Minta Akin |
---|---|
Rok vydání: | 2018 |
Předmět: |
Materials science
010504 meteorology & atmospheric sciences Silicate perovskite Thermodynamics Forsterite engineering.material 010502 geochemistry & geophysics 01 natural sciences Shock (mechanics) Geophysics Metastability Phase (matter) engineering General Earth and Planetary Sciences Orthorhombic crystal system Crystallite Periclase 0105 earth and related environmental sciences |
Zdroj: | Geophysical Research Letters. 45:8129-8135 |
ISSN: | 1944-8007 0094-8276 |
DOI: | 10.1029/2018gl077996 |
Popis: | Shockwave data on mineral‐forming compounds such as Mg2SiO4 are essential for understanding the interiors of Earth and other planets, but correct interpretation of these data depend on knowing the phase assemblage being probed at high pressure. Hence direct observations of the phase or phases making up the measured states along the forsterite Hugoniot are essential to assess whether kinetic factors inhibit the achievement of the expected equilibrium, phase‐separated assemblage. Previous shock recovery experiments on forsterite, which has orthorhombic space group Pbnm, show discrepant results as to whether forsterite undergoes segregation into its equilibrium phase assemblage of compositionally distinct structures upon shock compression. Here, we present the results of plate impact experiments on polycrystalline forsterite conducted at the Dynamic Compression Sector of the Advanced Photon Source. In situ x‐ray diffraction measurements were used to probe the crystal structure(s) in the shock state and to investigate potential decomposition into periclase and bridgmanite. In contrast to previous interpretations of the forsterite shock Hugoniot, we find that forsterite does not decompose, but instead reaches the forsterite III structure, which is a metastable structure of Mg_2SiO_4 with orthorhombic space group Cmc2_1. |
Databáze: | OpenAIRE |
Externí odkaz: |