A Python library for probabilistic analysis of single-cell omics data

Autor: Adam Gayoso, Romain Lopez, Galen Xing, Pierre Boyeau, Valeh Valiollah Pour Amiri, Justin Hong, Katherine Wu, Michael Jayasuriya, Edouard Mehlman, Maxime Langevin, Yining Liu, Jules Samaran, Gabriel Misrachi, Achille Nazaret, Oscar Clivio, Chenling Xu, Tal Ashuach, Mariano Gabitto, Mohammad Lotfollahi, Valentine Svensson, Eduardo da Veiga Beltrame, Vitalii Kleshchevnikov, Carlos Talavera-López, Lior Pachter, Fabian J. Theis, Aaron Streets, Michael I. Jordan, Jeffrey Regier, Nir Yosef
Rok vydání: 2022
Předmět:
Zdroj: Nature Biotechnology. 40:163-166
ISSN: 1546-1696
1087-0156
Popis: Methods for analyzing single-cell data perform a core set of computational tasks. These tasks include dimensionality reduction, cell clustering, cell-state annotation, removal of unwanted variation, analysis of differential expression, identification of spatial patterns of gene expression, and joint analysis of multi-modal omics data. Many of these methods rely on likelihood-based models to represent variation in the data; we refer to these as ‘probabilistic models’. Probabilistic models provide principled ways to capture uncertainty in biological systems and are convenient for decomposing the many sources of variation that give rise to omics data.
Databáze: OpenAIRE