Multilinear polynomials are surjective on algebras with surjective inner derivations
Autor: | Daniel Vitas |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Polynomial Multilinear map Algebra and Number Theory Mathematics::Commutative Algebra Unital 010102 general mathematics Mathematics - Rings and Algebras Condensed Matter::Mesoscopic Systems and Quantum Hall Effect 16R99 16W25 01 natural sciences Noncommutative geometry Surjective function Rings and Algebras (math.RA) 0103 physical sciences FOS: Mathematics 010307 mathematical physics 0101 mathematics Algebra over a field Element (category theory) Mathematics |
Zdroj: | Journal of Algebra. 565:255-281 |
ISSN: | 0021-8693 |
DOI: | 10.1016/j.jalgebra.2020.09.004 |
Popis: | Let $f(X_1,\dots, X_n)$ be a nonzero multilinear noncommutative polynomial. If $A$ is a unital algebra with a surjective inner derivation, then every element in $A$ can be written as $f(a_1,\dots,a_n)$ for some $a_i\in A$. Comment: 21 pages, 0 figures, submited to Journal of Algebra |
Databáze: | OpenAIRE |
Externí odkaz: |