Silicone matrices for controlled dexamethasone release: toward a better understanding of the underlying mass transport mechanisms

Autor: Thitiphorn Rongthong, Adam Qnouch, Maria Maue Gehrke, Laurent Paccou, Paulo Oliveira, Florence Danede, Jeremy Verin, Christophe Vincent, Jean-Francois Willart, Florence Siepmann, Juergen Siepmann
Přispěvatelé: Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 (MBLC - ADDS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille), Unité Matériaux et Transformations - UMR 8207 (UMET), Institut National de la Recherche Agronomique (INRA)-Ecole Nationale Supérieure de Chimie de Lille (ENSCL)-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ANR-15-CE19-0014,INI,Traitements Innovants pour l'Oreille Interne(2015), Université de Lille, Inserm, CHU Lille, Médicaments et biomatériaux à libération contrôlée: mécanismes et optimisation - Advanced Drug Delivery Systems - U 1008 [MBLC - ADDS], Unité Matériaux et Transformations - UMR 8207 [UMET], Advanced Drug Delivery Systems (ADDS) - U1008
Rok vydání: 2023
Předmět:
Zdroj: Regenerative Biomaterials
Regenerative Biomaterials, 2023, Regenerative Biomaterials, 10, pp.rbad008. ⟨10.1093/rb/rbad008⟩
ISSN: 2056-3426
2056-3418
Popis: Dexamethasone-loaded silicone matrices offer an interesting potential as innovative drug delivery systems, e.g. for the treatment of inner ear diseases or for pacemakers. Generally, very long drug release periods are targeted: several years/decades. This renders the development and optimization of novel drug products cumbersome: experimental feedback on the impact of the device design is obtained very slowly. A better understanding of the underlying mass transport mechanisms can help facilitating research in this field. A variety of silicone films were prepared in this study, loaded with amorphous or crystalline dexamethasone. Different polymorphic drug forms were investigated, the film thickness was altered and the drug optionally partially/completely exchanged by much more water-soluble dexamethasone ‘phosphate’. Drug release studies in artificial perilymph, scanning electron microscopy, optical microscopy, differential scanning calorimetry, X-ray diffraction and Raman imaging were used to elucidate the physical states of the drugs and polymer, and of the systems’ structure as well as dynamic changes thereof upon exposure to the release medium. Dexamethasone particles were initially homogeneously distributed throughout the systems. The hydrophobicity of the matrix former very much limits the amounts of water penetrating into the system, resulting in only partial drug dissolution. The mobile drug molecules diffuse out into the surrounding environment, due to concentration gradients. Interestingly, Raman imaging revealed that even very thin silicone layers (
Databáze: OpenAIRE