Six ‘Must-Have’ Minerals for Life’s Emergence: Olivine, Pyrrhotite, Bridgmanite, Serpentine, Fougerite and Mackinawite
Autor: | Adrian Ponce, Michael J. Russell |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
carbonic ocean
submarine alkaline vents emergence of life Hadean Silicate perovskite engineering.material 010502 geochemistry & geophysics Fougèrite 01 natural sciences General Biochemistry Genetics and Molecular Biology Article Astrobiology Mackinawite 0103 physical sciences lcsh:Science 010303 astronomy & astrophysics Pyrrhotite Ecology Evolution Behavior and Systematics 0105 earth and related environmental sciences Olivine Chemistry Paleontology solar system Redox gradient exoplanets Space and Planetary Science engineering redox gradient lcsh:Q Earth (classical element) proton gradient |
Zdroj: | Life Volume 10 Issue 11 Life, Vol 10, Iss 291, p 291 (2020) |
ISSN: | 2075-1729 |
DOI: | 10.3390/life10110291 |
Popis: | Life cannot emerge on a planet or moon without the appropriate electrochemical disequilibria and the minerals that mediate energy-dissipative processes. Here, it is argued that four minerals, olivine ([Mg> Fe]2SiO4), bridgmanite ([Mg,Fe]SiO3), serpentine ([Mg,Fe,]2-3Si2O5[OH)]4), and pyrrhotite (Fe(1&minus x)S), are an essential requirement in planetary bodies to produce such disequilibria and, thereby, life. Yet only two minerals, fougerite ([Fe2+6xFe3+6(x&minus 1)O12H2(7&minus 3x)]2+· [(CO2&minus )· 3H2O]2&minus ) and mackinawite (Fe[Ni]S), are vital&mdash comprising precipitate membranes&mdash as initial &ldquo free energy&rdquo conductors and converters of such disequilibria, i.e., as the initiators of a CO2-reducing metabolism. The fact that wet and rocky bodies in the solar system much smaller than Earth or Venus do not reach the internal pressure (&ge 23 GPa) requirements in their mantles sufficient for producing bridgmanite and, therefore, are too reduced to stabilize and emit CO2&mdash the staple of life&mdash may explain the apparent absence or negligible concentrations of that gas on these bodies, and thereby serves as a constraint in the search for extraterrestrial life. The astrobiological challenge then is to search for worlds that (i) are large enough to generate internal pressures such as to produce bridgmanite or (ii) boast electron acceptors, including imported CO2, from extraterrestrial sources in their hydrospheres. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |