Tl0.6Mo3S5, an original large tunnel-like molybdenum sulfide with Mo zigzag chains and disordered Tl cations
Autor: | Bernard Malaman, Bertrand Lenoir, Petr Levinský, Jaafar Ghanbaja, Patrick Gougeon, Anne Dauscher, Sylvie Migot, Maryvonne Hervieu, Philippe Gall, Jiří Hejtmánek, Christophe Candolfi |
---|---|
Přispěvatelé: | Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de cristallographie et sciences des matériaux (CRISMAT), École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC), Institute of Physics of the Czech Academy of Sciences (FZU / CAS), Czech Academy of Sciences [Prague] (CAS), French Agence Nationale de la Recherche (ANR), through the program Energy Challenge for Secure French National Research Agency (ANR) [ANR-15-CE05-0027], Czech Science Foundation Grant Agency of the Czech Republic [18-12761S], program of Czech Research Infrastructures [LM2018096], ANR-15-CE05-0027,MASSCOTE,Matériaux Sulfures à Structures Complexes: application à la Thermoélectricité(2015), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Diffraction
Materials science 02 engineering and technology Crystal structure [CHIM.MATE]Chemical Sciences/Material chemistry [CHIM.INOR]Chemical Sciences/Inorganic chemistry 010402 general chemistry 021001 nanoscience & nanotechnology 01 natural sciences 0104 chemical sciences Crystallography Zigzag Electron diffraction Chemistry (miscellaneous) Seebeck coefficient [CHIM]Chemical Sciences General Materials Science Wave vector Crystallite 0210 nano-technology Monoclinic crystal system |
Zdroj: | Materials Advances Materials Advances, Royal Society of Chemistry, 2021, 2 (18), pp.6020-6030. ⟨10.1039/d1ma00568e⟩ Materials Advances, 2021, 2 (18), pp.6020-6030. ⟨10.1039/d1ma00568e⟩ |
ISSN: | 2633-5409 |
DOI: | 10.1039/d1ma00568e⟩ |
Popis: | International audience; We report on the crystal structure and physical properties of Tl0.6Mo3S5, which belongs to a novel family of materials with large tunnels, reminiscent of those observed in the romanechite structure type. Tl cations are partially filling these tunnels delimited by the Mo-S cluster framework in which the Mo atoms form infinite zigzag chains. Single-crystal X-ray diffraction data indicate that this compound crystallizes in the monoclinic, non-centrosymmetric space group P21 (no. 4; a = 9.344(2) angstrom, b = 3.234(2) A, c = 11.669(2) A and beta = 113.09(2)° at 293 K). While electron diffraction performed on single crystals further evidences a commensurate modulation running solely along the b axis with a modulation wave vector further experiments carried out on a polycrystalline sample suggest a compositional dependence of q on the Tl content. Low-temperature transport properties measurements (5-300 K) reveal that Tl0.6Mo3S5 behaves as a narrow-band-gap n-type semiconductor. The strongly non-linear temperature dependence of the thermopower further suggests the presence of several electronic bands contributing to the electrical transport. Consistent with the extended electronic distribution in the tunnels that requires a description using two adjacent Tl sites, specific heat data measured down to 0.35 K evidence the presence of a Schottky-type anomaly that may be associated with the tunneling of the Tl cations between several equivalent, off-centered equilibrium sites. This inherent disorder contributes to suppression of the low-temperature Umklapp peak in the lattice thermal conductivity kL, the temperature dependence of which mimics that observed in strongly-disordered compounds. In spite of this characteristic, high kL values of up to 3.8 W m-1K-1 are reached at 300 K, due to the covalent Mo-S network that contributes to maintaining high sound velocities. |
Databáze: | OpenAIRE |
Externí odkaz: |