An extension of the all-Mach number pressure-based solution framework for numerical modelling of two-phase flows with interface

Autor: Matvey Kraposhin, Aleksandr Kukharskii, null Victoria, Aleksandr Shevelev
Rok vydání: 2022
Předmět:
Zdroj: Industrial processes and technologies. 2:6-27
ISSN: 2713-0789
DOI: 10.37816/2713-0789-2022-2-3(5)-6-27
Popis: In this paper, we present the extension of the pressure-based solver designed for the simulation of compressible and/or incompressible two-phase flows of viscous fluids. The core of the numerical scheme is based on the hybrid Kurganov — Noele — Petrova/PIMPLE algorithm. The governing equations are discretized in the conservative form and solved for velocity and pressure, with the density evaluated by an equation of state. The acoustic-conservative interface discretization technique helps to prevent the unphysical instabilities on the interface. The solver was validated on various cases in wide range of Mach number, both for single-phase and two-phase flows. The numerical algorithm was implemented on the basis of the well-known open-source Computational Fluid Dynamics library OpenFOAM in the solver called interTwoPhaseCentralFoam. The source code and the pack of test cases are available on GitHub: https://github.com/unicfdlab/hybridCentralSolvers The research was supported by Russian Science Foundation (proj. 17-79-20445).
Databáze: OpenAIRE