Geometric reduction of Hamiltonian systems

Autor: Krzysztof Marciniak, Maciej Blaszak
Rok vydání: 2005
Předmět:
Zdroj: Reports on Mathematical Physics. 55:325-339
ISSN: 0034-4877
DOI: 10.1016/s0034-4877(05)80049-7
Popis: Given a foliation S of a manifold M, a distribution Z in M transveral to S and a Poisson bivector \Pi on M we present a geometric method of reducing this operator on the foliation S along the distribution Z. It encompasses the classical ideas of Dirac (Dirac reduction) and more modern theory of J. Marsden and T. Ratiu, but our method leads to formulas that allow for an explicit calculation of the reduced Poisson bracket. Moreover, we analyse the reduction of Hamiltonian systems corresponding to the bivector \Pi.
Comment: To appear in Rep. Math. Phys. LaTeX file generated by SWP 4.0
Databáze: OpenAIRE