Conservation laws of some lattice equations
Autor: | Da-jun Zhang, Jun-wei Cheng |
---|---|
Rok vydání: | 2013 |
Předmět: |
Physics
Conservation law Nonlinear Sciences - Exactly Solvable and Integrable Systems High Energy Physics::Lattice Mathematics::Analysis of PDEs FOS: Physical sciences Physics::Fluid Dynamics symbols.namesake 39-04 39A05 39A14 Nonlinear Sciences::Exactly Solvable and Integrable Systems Mathematics (miscellaneous) Lattice (order) symbols Exactly Solvable and Integrable Systems (nlin.SI) Nonlinear Sciences::Pattern Formation and Solitons Nonlinear Schrödinger equation Mathematical physics |
Zdroj: | Frontiers of Mathematics in China. 8:1001-1016 |
ISSN: | 1673-3576 1673-3452 |
Popis: | We derive infinitely many conservation laws for some multi-dimensionally consistent lattice equations from their Lax pairs. These lattice equations are the Nijhoff-Quispel-Capel equation, lattice Boussinesq equation, lattice nonlinear Schr\"{o}dinger equation, modified lattice Boussinesq equation, Hietarinta's Boussinesq-type equations, Schwarzian lattice Boussinesq equation and Toda-modified lattice Boussinesq equation. |
Databáze: | OpenAIRE |
Externí odkaz: |