Metaanálisis del uso de los modelos bayesianos en el diagnóstico de cáncer de mama

Autor: Gustavo Pasquali Moretti, Carla Sasso Simon, Maria Inês da Rosa, Erik Paul Winnikow, Priscyla Waleska Targino de Azevedo Simões, Silvia Modesto Nassar, Lidia Rosi Medeiros, Geraldo Doneda da Silva
Rok vydání: 2015
Předmět:
Zdroj: Cadernos de Saúde Pública v.31 n.1 2015
Cadernos de Saúde Pública
Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
Cadernos de Saúde Pública, Volume: 31, Issue: 1, Pages: 26-38, Published: JAN 2015
Cadernos de Saúde Pública, Vol 31, Iss 1, Pp 26-38 (2015)
ISSN: 0102-311X
DOI: 10.1590/0102-311x00205213
Popis: The aim of this study was to determine the accuracy of Bayesian networks in supporting breast cancer diagnoses. Systematic review and meta-analysis were carried out, including articles and papers published between January 1990 and March 2013. We included prospective and retrospective cross-sectional studies of the accuracy of diagnoses of breast lesions (target conditions) made using Bayesian networks (index test). Four primary studies that included 1,223 breast lesions were analyzed, 89.52% (444/496) of the breast cancer cases and 6.33% (46/727) of the benign lesions were positive based on the Bayesian network analysis. The area under the curve (AUC) for the summary receiver operating characteristic curve (SROC) was 0.97, with a Q* value of 0.92. Using Bayesian networks to diagnose malignant lesions increased the pretest probability of a true positive from 40.03% to 90.05% and decreased the probability of a false negative to 6.44%. Therefore, our results demonstrated that Bayesian networks provide an accurate and non-invasive method to support breast cancer diagnosis. O objetivo deste estudo foi avaliar a acurácia das redes bayesianas no apoio ao diagnóstico de câncer de mama. Foram realizadas revisão sistemática e metanálise, que incluíram artigos e relatórios publicados entre Janeiro de 1990 e Março de 2013. Foram incluídos estudos transversais prospectivos e retrospectivos que avaliaram a acurácia do diagnóstico de lesões de mama (condição alvo) usando as redes bayesianas (teste em avaliação). Quatro estudos primários que incluíram 1.223 lesões de mama foram analisados, 89,52% (444/496) dos casos de câncer de mama e 6,33% (46/727) das lesões benignas foram positivas tendo-se como base a análise das redes bayesianas. A área dentro da curva SROC (característica de operação do receptor sumária) foi 0,97, com um valor Q* de 0,92. O uso de redes bayesianas no diagnóstico de lesões malignas aumentou a probabilidade pré-teste para um verdadeiro positivo de 40,03% para 90,05% e diminuiu a probabilidade de um falso negativo para 6,44%. Portanto, nossos resultados demonstraram que as redes bayesianas oferecem um método acurado e não invasivo no apoio ao diagnóstico de câncer de mama. El objetivo de este estudio fue evaluar la exactitud de las redes bayesianas para apoyar el diagnóstico de cáncer de mama. Se realizó una revisión sistemática y un metaanálisis, que incluyeron artículos y estudios publicados entre enero de 1990 y marzo de 2013. Se incluyeron estudios transversales prospectivos y retrospectivos, que evaluaron la exactitud del diagnóstico de lesiones mamarias (condición de destino), utilizando redes bayesianas (prueba de evaluación). Se analizaron cuatro estudios que incluyeron 1.223 lesiones de mama primarias, un 89,52% (444/496) de los casos de cáncer de mama, y un 6,33% (46/727) de las lesiones benignas se tomaron como base de análisis de las redes bayesianas. El área bajo la curva SROC (característica operativa del receptor) fue de un 0,97, con un valor de Q* de un 0,92. El uso de las redes bayesianas en el diagnóstico de las lesiones malignas aumentó la probabilidad pre test de un verdadero positivo desde un 40,03% a un 90,05%, y la disminución de la probabilidad de un falso negativo de un 6,44%. Por lo tanto, nuestros resultados demuestran que las redes bayesianas ofrecen un método preciso y no invasivo en el apoyo del diagnóstico del cáncer mamario.
Databáze: OpenAIRE