Interpretable tourism demand forecasting with temporal fusion transformers amid COVID-19

Autor: Binrong Wu, Lin Wang, Yu-Rong Zeng
Rok vydání: 2022
Předmět:
Zdroj: Applied Intelligence. 53:14493-14514
ISSN: 1573-7497
0924-669X
DOI: 10.1007/s10489-022-04254-0
Popis: An innovative ADE-TFT interpretable tourism demand forecasting model was proposed to address the issue of the insufficient interpretability of existing tourism demand forecasting. This model effectively optimizes the parameters of the Temporal Fusion Transformer (TFT) using an adaptive differential evolution algorithm (ADE). TFT is a brand-new attention-based deep learning model that excels in prediction research by fusing high-performance prediction with time-dynamic interpretable analysis. The TFT model can produce explicable predictions of tourism demand, including attention analysis of time steps and the ranking of input factors' relevance. While doing so, this study adds something unique to the literature on tourism by using historical tourism volume, monthly new confirmed cases of travel destinations, and big data from travel forums and search engines to increase the precision of forecasting tourist volume during the COVID-19 pandemic. The mood of travelers and the many subjects they spoke about throughout off-season and peak travel periods were examined using a convolutional neural network model. In addition, a novel technique for choosing keywords from Google Trends was suggested. In other words, the Latent Dirichlet Allocation topic model was used to categorize the major travel-related subjects of forum postings, after which the most relevant search terms for each topic were determined. According to the findings, it is possible to estimate tourism demand during the COVID-19 pandemic by combining quantitative and emotion-based characteristics.
Databáze: OpenAIRE