All-printed diode operating at 1.6 GHz
Autor: | Peter Andersson Ersman, David Nilsson, Göran Gustafsson, Negar Abdollahi Sani, Magnus Berggren, Mats Fahlman, Laurent Akesso, Isak Engquist, Xianjie Liu, Mats Robertsson, Petronella Norberg, Marie Nilsson, Magnus Svensson, Xavier Crispin, Hjalmar Hesselbom, Philip George Cooper, Xin Wang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Engineering
Multidisciplinary business.industry UHF silicon particle Substrate (printing) Electrical Engineering Electronic Engineering Information Engineering computer.software_genre Semiconductor Rectification Ultra high frequency Stack (abstract data type) GSM Printed electronics Commentaries Physical Sciences Optoelectronics Fysik Data mining business Elektroteknik och elektronik computer Diode |
Popis: | Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications. Funding Agencies|Knut and Alice Wallenberg Foundation (Power Paper Project) [KAW 2011.0050]; Onnesjo Foundation; Swedish Research Council Linnaeus Grant LiLi-NFM; European Regional Development Fund through Tillvaxtverket (Project PEA-PPP) |
Databáze: | OpenAIRE |
Externí odkaz: |