Central Configurations and Action Minimizing Orbits in Kite Four-Body Problem
Autor: | Iharka Szücs-Csillik, Brahim Benhammouda, Daniel Offin, Muhammad Shoaib, Abdalla Mansur |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Physics
Current (mathematics) Article Subject Astronomy 010102 general mathematics Mathematical analysis Astronomy and Astrophysics Context (language use) QB1-991 Space (mathematics) 01 natural sciences Action (physics) symbols.namesake Space and Planetary Science Kite Quasiperiodic function 0103 physical sciences Poincaré conjecture symbols 0101 mathematics 010303 astronomy & astrophysics Mass parameter |
Zdroj: | Advances in Astronomy, Vol 2020 (2020) |
ISSN: | 1687-7969 |
DOI: | 10.1155/2020/5263750 |
Popis: | In the current article, we study the kite four-body problems with the goal of identifying global regions in the mass parameter space which admits a corresponding central configuration of the four masses. We consider two different types of symmetrical configurations. In each of the two cases, the existence of a continuous family of central configurations for positive masses is shown. We address the dynamical aspect of periodic solutions in the settings considered and show that the minimizers of the classical action functional restricted to the homographic solutions are the Keplerian elliptical solutions. Finally, we provide numerical explorations via Poincaré cross-sections, to show the existence of periodic and quasiperiodic solutions within the broader dynamical context of the four-body problem. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |