A universal law for Voronoi cell volumes in infinitely large maps

Autor: Emmanuel Guitter
Přispěvatelé: Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Statistics and Probability
media_common.quotation_subject
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]
FOS: Physical sciences
Universal law
Computer Science::Computational Geometry
01 natural sciences
Planar
0103 physical sciences
[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]
FOS: Mathematics
Mathematics - Combinatorics
0101 mathematics
010306 general physics
Mathematical Physics
random graphs
media_common
Mathematics
Finite volume method
Laplace transform
010102 general mathematics
Mathematical analysis
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
16. Peace & justice
Infinity
networks
Probability distribution
Combinatorics (math.CO)
rigorous results in statistical mechanics
Statistics
Probability and Uncertainty

exact results
Voronoi diagram
Volume (compression)
Zdroj: Journal of Statistical Mechanics: Theory and Experiment
Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, 2018, 18, pp.013205. ⟨10.1088/1742-5468/aa9db4⟩
Journal of Statistical Mechanics: Theory and Experiment, 2018, 18, pp.013205. ⟨10.1088/1742-5468/aa9db4⟩
ISSN: 1742-5468
DOI: 10.1088/1742-5468/aa9db4⟩
Popis: We discuss the volume of Voronoi cells defined by two marked vertices picked randomly at a fixed given mutual distance 2s in random planar quadrangulations. We consider the regime where the mutual distance 2s is kept finite while the total volume of the quadrangulation tends to infinity. In this regime, exactly one of the Voronoi cells keeps a finite volume, which scales as s^4 for large s. We analyze the universal probability distribution of this, properly rescaled, finite volume and present an explicit formula for its Laplace transform.
23 pages, 6 figures
Databáze: OpenAIRE