Crystal structure, Hirshfeld surface analysis, vibrational, thermal behavior and UV spectroscopy of (2,6-diaminopyridinium) dihydrogen arsenate

Autor: Abdelaziz Daoud, Tahar Mhiri, N. Chniba-Boudjada, Mohamed Boujelbene, Chawki Ben Hassen, Emna Bouaziz
Přispěvatelé: Matériaux, Rayonnements, Structure (MRS), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire Physicochimie de l'Etat Solide, Université de Sfax - University of Sfax
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Journal of Molecular Structure
Journal of Molecular Structure, Elsevier, 2017, 1145, pp.121-131. ⟨10.1016/j.molstruc.2017.05.043⟩
ISSN: 0022-2860
Popis: A new organic dihydrogenomonoarsenate (C5H8N3)H2AsO4 was synthesized by slow evaporation method at room temperature and characterized by X-ray single crystal diffraction. This compound crystallizes in the monoclinic system with the centro-symmetric space group P21/n. Unit cell parameters are a = 10.124 (5)Ǻ, b = 6.648 (5)Ǻ, c = 13.900 (5)Ǻ, β = 105.532° with Z = 4. The crystal structure was solved and refined to R = 0.038 with 2001 independent reflections. Hirshfeld surfaces analysis were used to visualize the fidelity of the crystal structure which has been determined by X-ray data collection on single crystals (C5H8N3)H2AsO4. Due the strong hydrogen O H⋯O bond network connecting the H2AsO4 groups, the anionic arrangement must be described as infinite (H2AsO4)nn-of dimers chains spreading, in a zig zag fashion, parallel to the b direction. The organic groups (C5H8N3)+ are anchored between adjacent polyanions through multiple hydrogen bonds N H⋯O. The thermal decomposition of precursors studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), indicate the existence of two mass loss regions correspond to degradation of the title compound. The existence of vibrational modes correspond to the organic and inorganic groups are identified by the infrared and Raman spectroscopy in the frequency ranges 500–4000 and 25-4000 cm−1, respectively.
Databáze: OpenAIRE