Heat Kernel for Liouville Brownian Motion and Liouville Graph Distance
Autor: | Jian Ding, Ofer Zeitouni, Fuxi Zhang |
---|---|
Rok vydání: | 2019 |
Předmět: |
Physics
Astrophysics::High Energy Astrophysical Phenomena Probability (math.PR) 010102 general mathematics Statistical and Nonlinear Physics 01 natural sciences Combinatorics 0103 physical sciences FOS: Mathematics Exponent Quantum gravity 010307 mathematical physics 0101 mathematics Scaling Mathematics - Probability Mathematical Physics Brownian motion Distance Heat kernel |
Zdroj: | Communications in Mathematical Physics |
ISSN: | 1432-0916 0010-3616 |
DOI: | 10.1007/s00220-019-03467-8 |
Popis: | We show the existence of the scaling exponent $$\chi = \chi (\gamma )$$ , with $$\begin{aligned} 0 < \chi \le \frac{4}{\gamma ^2} \left( \left( 1+ {\gamma ^2} / 4 \right) - \sqrt{1+ {\gamma ^4} / {16} } \right) , \end{aligned}$$ of the graph distance associated with subcritical two-dimensional Liouville quantum gravity of paramater $$\gamma |
Databáze: | OpenAIRE |
Externí odkaz: |