The Whitham Equation with Surface Tension

Autor: Henrik Kalisch, Denys Dutykh, Evgueni Dinvay, Daulet Moldabayev
Přispěvatelé: Department of Mathematics, University of Bergen (UiB), Laboratoire de Mathématiques (LAMA), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Institut National des Sciences Mathématiques et de leurs Interactions (INSMI), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
Jazyk: angličtina
Rok vydání: 2020
Předmět:
[PHYS.PHYS.PHYS-FLU-DYN]Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn]
Mathematics::Analysis of PDEs
Aerospace Engineering
FOS: Physical sciences
Ocean Engineering
01 natural sciences
010305 fluids & plasmas
Hamiltonian system
Surface tension
[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph]
Physics::Fluid Dynamics
Mathematics - Analysis of PDEs
[NLIN.NLIN-PS]Nonlinear Sciences [physics]/Pattern Formation and Solitons [nlin.PS]
Inviscid flow
0103 physical sciences
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Fully dispersive equations
[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]
Mathematics - Numerical Analysis
0101 mathematics
Electrical and Electronic Engineering
Hamiltonian systems
Korteweg–de Vries equation
Nonlinear Sciences::Pattern Formation and Solitons
Physics
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]
Whitham equation
Applied Mathematics
Mechanical Engineering
010102 general mathematics
Mathematical analysis
Fluid Dynamics (physics.flu-dyn)
Numerical Analysis (math.NA)
Physics - Fluid Dynamics
Euler system
Computational Physics (physics.comp-ph)
Surface waves
3. Good health
Physics - Atmospheric and Oceanic Physics
Nonlinear Sciences::Exactly Solvable and Integrable Systems
Control and Systems Engineering
Capillarity
Free surface
Atmospheric and Oceanic Physics (physics.ao-ph)
Compressibility
Physics - Computational Physics
Analysis of PDEs (math.AP)
Zdroj: Nonlinear Dynamics
Nonlinear Dynamics, Springer Verlag, 2017, 88 (2), pp.1125-1138. ⟨10.1007/s11071-016-3299-7⟩
ISSN: 0924-090X
1573-269X
DOI: 10.1007/s11071-016-3299-7⟩
Popis: The viability of the Whitham equation as a nonlocal model for capillary-gravity waves at the surface of an inviscid incompressible fluid is under study. A nonlocal Hamiltonian system of model equations is derived using the Hamiltonian structure of the free surface water wave problem and the Dirichlet-Neumann operator. The system features gravitational and capillary effects, and when restricted to one-way propagation, the system reduces to the capillary Whitham equation. It is shown numerically that in various scaling regimes the Whitham equation gives a more accurate approximation of the free-surface problem for the Euler system than other models like the KdV, and Kawahara equation. In the case of relatively strong capillarity considered here, the KdV and Kawahara equations outperform the Whitham equation with surface tension only for very long waves with negative polarity.
19 pages, 5 figures, 1 table, 36 references. Other author's papers can be downloaded at http://www.denys-dutykh.com/. arXiv admin note: text overlap with arXiv:1410.8299
Databáze: OpenAIRE