Characterization of generalized absolute Cesàro summability factors
Autor: | Hazar Güleç, G. Canan |
---|---|
Rok vydání: | 2020 |
Předmět: |
Physics
Inclusion relations 40C05 Algebra and Number Theory 40D25 Functional analysis Applied Mathematics 40F05 Spaces Cesàro summation Theorem Type (model theory) Characterization (mathematics) Combinatorics Summability factors 46A45 Geometry and Topology Generalized absolute Cesaro summability Analysis |
Zdroj: | The Journal of Analysis. 29:105-111 |
ISSN: | 2367-2501 0971-3611 |
DOI: | 10.1007/s41478-020-00249-7 |
Popis: | Recently, Sarigol (in: Kuwait J Sci 42(3):28–35, 2015) has investigated the summability factors of type $$\varepsilon \in \left( {\left| {C,\alpha } \right|_{k} ,\left| {\bar{N}, p_{n} } \right|} \right)$$ , for $$\alpha > - 1$$ , $$k > 1$$ and arbitrary positive sequence $$\left( {p_{n} } \right)$$ , which extends some well known results. The aim of this paper is to generalize these results using more general summability $$\left| {C,\alpha ,\beta } \right|_{k}$$ , $$k \ge 1.$$ More precisely, we give characterization of the summability factors of the types $$\left( {\left| {C,\alpha ,\beta } \right|_{k} ,\left| {\bar{N}, p_{n} } \right|} \right)$$ , $$k > 1$$ and $$\left( {\left| {\bar{N}, p_{n} } \right|,\left| {C,\alpha ,\beta } \right|_{k} } \right) , k \ge 1$$ for $$\alpha + \beta > - 1$$ and a positive sequence $$\left( {p_{n} } \right)$$ . |
Databáze: | OpenAIRE |
Externí odkaz: |