SOME NEW GENERALIZATIONS OF HADAMARD–TYPE MIDPOINT INEQUALITIES INVOLVING FRACTIONAL INTEGRALS

Autor: Bahtiyar Bayraktar
Přispěvatelé: Bursa Uludağ Üniversitesi/Eğitim Fakültesi., Bayraktar, Bahtiyar
Rok vydání: 2020
Předmět:
Zdroj: Проблемы анализа, Vol 927, Iss 3, Pp 66-82 (2020)
ISSN: 2306-3432
DOI: 10.15393/j3.art.2020.8270
Popis: In this study, we formulate the identity and obtain some generalized inequalities of the Hermite-Hadamard type by using fractional Riemann-Liouville integrals for functions whose absolute values of the second derivatives are convex. The results are obtained by uniformly dividing a segment [a,b] into n equal sub-intervals. Using this approach, the absolute error of a Midpoint inequality is shown to decrease approximately n(2) times. A dependency between accuracy of the absolute error (epsilon) of the upper limit of the Hadamard inequality and the number (n) of lower intervals is obtained.
Databáze: OpenAIRE