Best Practices of Assisted History Matching Using Design of Experiments

Autor: Boxiao Li, Travis C. Billiter, Stephen J. Gross, Eric Whittet Bhark, Kaveh Dehghani
Rok vydání: 2019
Předmět:
Zdroj: SPE Journal. 24:1435-1451
ISSN: 1930-0220
1086-055X
Popis: SummaryAssisted history matching (AHM) using design of experiments (DOE) is one of the most commonly applied history-matching techniques in the oil and gas industry. When applied properly, this stochastic method finds a representative ensemble of history-matched reservoir models for probabilistic uncertainty analysis of production forecasts. Although DOE-based AHM is straightforward in concept, it can be misused in practice because the work flow involves many statistical and modeling principles that should be followed rigorously.In this paper, the entire DOE-based AHM work flow is demonstrated in a coherent and comprehensive case study that is divided into seven key stages: problem framing, sensitivity analysis, proxy building, Monte Carlo simulation, history-match filtering, production forecasting, and representative model selection. The best practices of each stage are summarized to help reservoir-management engineers understand and apply this powerful work flow for reliable history matching and probabilistic production forecasting.One major difficulty in any history-matching method is to define the history-match tolerance, which reflects the engineer's comfort level of calling a reservoir model “history matched” even though the difference between simulated and observed production data is not zero. It is a compromise to the intrinsic and unavoidable imperfectness of reservoir-model construction, data measurement, and proxy creation. A practical procedure is provided to help engineers define the history-match tolerance considering the model, data-measurement, and proxy errors.
Databáze: OpenAIRE