Characterization of a reversible thermally-actuated polymer-valve: A potential dynamic treatment for congenital diaphragmatic hernia

Autor: Anthony Johnson, Justin S. Baba, M. Nance Ericson, Boyd M. Evans, Timothy E. McKnight, Kenneth J. Moise
Rok vydání: 2018
Předmět:
0301 basic medicine
Amniotic fluid
Medical Implants
Polymers
Physiology
02 engineering and technology
030105 genetics & heredity
Body Temperature
Polymerization
Fetoscopy
Pregnancy
Occlusion
Medicine and Health Sciences
Materials
chemistry.chemical_classification
Multidisciplinary
medicine.diagnostic_test
Physics
Chemical Reactions
Temperature
Classical Mechanics
Prostheses and Implants
Polymer
021001 nanoscience & nanotechnology
Diaphragm (structural system)
Trachea
Chemistry
Fetal Diseases
Macromolecules
Physiological Parameters
Obstetric Procedures
Physical Sciences
Engineering and Technology
Medicine
Female
0210 nano-technology
Research Article
Biotechnology
Materials science
Amorphous Solids
Science
Materials Science
Diaphragmatic breathing
Surgical and Invasive Medical Procedures
Bioengineering
Fluid Mechanics
Continuum Mechanics
03 medical and health sciences
Fetal Organ Maturity
medicine
Animals
Humans
Fluid Flow
Biology and Life Sciences
Congenital diaphragmatic hernia
Fluid Dynamics
Polymer Chemistry
medicine.disease
Valve actuator
chemistry
Medical Devices and Equipment
Glass
Hernias
Diaphragmatic
Congenital

Biomedical engineering
Zdroj: PLoS ONE, Vol 13, Iss 12, p e0209855 (2018)
PLoS ONE
ISSN: 1932-6203
Popis: BackgroundCongenital diaphragmatic hernia (CDH) is a fetal defect comprising an incomplete diaphragm and the herniation of abdominal organs into the chest cavity that interfere with fetal pulmonary development. Though the most promising treatment for CDH is via interventional fetoscopic tracheal occlusion (TO) surgery in-utero, it has produced mixed results due to the static nature of the inserted occlusion. We hypothesize that a suitable noninvasively-actuatable, cyclic-release tracheal occlusion device can be developed to enable dynamic tracheal occlusion (dTO) implementation.ObjectiveTo conduct an in-vitro proof-of-concept investigation of the construction of thermo-responsive polymer valves designed for targeted activation within a physiologically realizable temperature range as a first step towards potential development of a noninvasively-actuatable implantable device to facilitate dynamic tracheal occlusion (dTO) therapy.MethodsSix thermo-responsive polymer valves, with a critical solution temperature slightly higher than normal physiological body temperature of 37°C, were fabricated using a copolymer of n-isopropylacrylamide (NIPAM) and dimethylacrylamide (DMAA). Three of the valves underwent ethylene oxide (EtO) sterilization while the other three served as controls for EtO-processing compatibility testing. Thermal response actuation of the valves and their steady-state flow performances were evaluated using water and caprine amniotic fluid.ResultsAll six valves consisting of 0.3-mole fraction of DMAA were tested for thermal actuation of caprine amniotic fluid flow at temperatures ranging from 30-44°C. They all exhibited initiation of valve actuation opening at ~40°C with full completion at ~44°C. The overall average coefficient of variation (CV) for the day-to-day flow performance of the valves tested was less than 12%. Based on a Student t-test, there was no significant difference in the operational characteristics for the EtO processed versus the non-EtO processed valves tested.ConclusionsWe successfully fabricated and demonstrated physiological realizable temperature range operation of thermo-responsive polymer valves in-vitro and their suitability for standard EtO sterilization processing, a prerequisite for future in-vivo surgical implantation testing.
Databáze: OpenAIRE