ITTACA: a new database for integrated tumor transcriptome array and clinical data analysis

Autor: Emmanuel Barillot, Catia Verbeke, Philippe La Rosa, Adil Elfilali, François Radvanyi, Séverine Lair
Přispěvatelé: Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2006
Předmět:
Uveal Neoplasms
MESH: Carcinoma
Transcription
Genetic

Gene Expression
computer.software_genre
Transcriptome
User-Computer Interface
0302 clinical medicine
Neoplasms
Databases
Genetic

MESH: Neoplasms
Melanoma
MESH: Databases
Genetic

0303 health sciences
Database
3. Good health
MESH: Urinary Bladder Neoplasms
MESH: Internet
030220 oncology & carcinogenesis
MESH: Survival Analysis
User interface
DNA microarray
MESH: Gene Expression
MESH: Melanoma
MEDLINE
Breast Neoplasms
Biology
Article
03 medical and health sciences
MESH: Gene Expression Profiling
Genetics
medicine
Humans
Survival analysis
MESH: Genes
Neoplasm

030304 developmental biology
MESH: User-Computer Interface
Internet
MESH: Humans
Gene Expression Profiling
MESH: Transcription
Genetic

Carcinoma
Cancer
medicine.disease
Survival Analysis
Systems Integration
Gene expression profiling
Urinary Bladder Neoplasms
Tumor progression
MESH: Uveal Neoplasms
MESH: Systems Integration
[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]
computer
MESH: Breast Neoplasms
Genes
Neoplasm
Zdroj: Nucleic Acids Research
Nucleic Acids Research, 2006, 34 (90001), pp.D613-D616. ⟨10.1093/nar/gkj022⟩
Nucleic Acids Research, Oxford University Press, 2006, 34 (90001), pp.D613-D616. ⟨10.1093/nar/gkj022⟩
Scopus-Elsevier
ISSN: 0305-1048
1362-4962
DOI: 10.1093/nar/gkj022⟩
Popis: International audience; Transcriptome microarrays have become one of the tools of choice for investigating the genes involved in tumorigenesis and tumor progression, as well as finding new biomarkers and gene expression signatures for the diagnosis and prognosis of cancer. Here, we describe a new database for Integrated Tumor Transcriptome Array and Clinical data Analysis (ITTACA). ITTACA centralizes public datasets containing both gene expression and clinical data. ITTACA currently focuses on the types of cancer that are of particular interest to research teams at Institut Curie: breast carcinoma, bladder carcinoma and uveal melanoma. A web interface allows users to carry out different class comparison analyses, including the comparison of expression distribution profiles, tests for differential expression and patient survival analyses. ITTACA is complementary to other databases, such as GEO and SMD, because it offers a better integration of clinical data and different functionalities. It also offers more options for class comparison analyses when compared with similar projects such as Oncomine. For example, users can define their own patient groups according to clinical data or gene expression levels. This added flexibility and the user-friendly web interface makes ITTACA especially useful for comparing personal results with the results in the existing literature. ITTACA is accessible online at http://bioinfo.curie.fr/ittaca.
Databáze: OpenAIRE